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Abstract. Two-photon exchange contributions to unpolarized and polarized elastic electron–proton scatter-
ing cross sections are evaluated taking into account nucleon finite size effects using realistic form factors.
Contributions from nucleon elastic intermediate states are found to have a strong angular dependence,
which partially resolves the discrepancy between Rosenbluth and polarization transfer measurements of
the proton electric to magnetic form factor ratio. Two-photon contributions to the longitudinal and trans-
verse polarizations are generally found to be small. A comparison is made of two-photon exchange effects
with existing data on the ratio of e+p to e−p cross sections, which is predicted to be enhanced at backward
angles.

PACS. 25.30.Bf Elastic electron scattering – 13.40.Gp Electromagnetic form factors

1 Introduction

Electromagnetic form factors are fundamental observables
which characterize the composite nature of the nucleon. In
the standard one-photon exchange (Born) approximation,
the electromagnetic current operator is parameterized in
terms of two form factors, usually taken to be the Dirac
(F1) and Pauli (F2) form factors,

Γµ = F1(q2) γµ +
iσµνqν

2M
F2(q2) , (1)

where q is the momentum transfer to the nucleon, and
M is the nucleon mass. The resulting cross section de-
pends on two kinematic variables, conventionally taken
to be Q2 ≡ −q2 (or τ ≡ Q2/4M2) and either the scat-
tering angle θ, or the virtual photon polarization ε =(
1 + 2(1 + τ) tan2 (θ/2)

)−1. In terms of the Sachs electric
and magnetic form factors, defined as

GE(Q2) = F1(Q2) − τF2(Q2) , (2)
GM (Q2) = F1(Q2) + F2(Q2) , (3)

the reduced Born cross section can be written

σR = G2
M (Q2) +

ε

τ
G2

E(Q2) . (4)

The Rosenbluth, or longitudinal-transverse (LT), sep-
aration method extracts G2

M from the ε-intercept, and the
ratio R ≡ µGE/GM from the slope in ε, where µ is the
nucleon magnetic moment. The results of the Rosenbluth
measurements for the proton have generally been consis-
tent with R ≈ 1 for Q2 ≤ 6 GeV2 [1,2]. The “Super-
Rosenbluth” experiment at Jefferson Lab [3], in which

smaller systematic errors were achieved by detecting the
recoiling proton rather than the electron, as in previous
measurements, is also consistent with the earlier LT re-
sults.

Alternatively, the ratio R was measured recently at
Jefferson Lab [4] by using a polarized electron beam scat-
tering from an unpolarized target, with measurement of
the polarization of the recoiling proton. From the ratio
of the transverse to longitudinal recoil polarizations one
finds

R = −µ
PT

PL

(Ei + Ef )
2M

tan
θ

2
, (5)

where Ei and Ef are the initial and final electron ener-
gies, and PT (PL) is the polarization of the recoil proton
transverse (longitudinal) to the proton momentum in the
scattering plane.

The polarization transfer experiments yield strikingly
different results compared with the LT separation, with
R ≈ 1 − 0.135(Q2/GeV2 − 0.24) over the same range in
Q2 [2].

In this contribution we will discuss calculations of ra-
diative corrections, in particular two-photon exchange,
and how it affects both measurements.

2 Unpolarized electron–proton scattering

Including radiative corrections (RC) to order α, the elastic
scattering cross section is modified as

σR → σR(1 + δ) , (6)
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Fig. 1. Two-photon exchange box and crossed box diagrams
for elastic electron–proton scattering

where δ includes one-loop virtual corrections of order α
(vacuum polarization, electron and proton vertex, and
two photon exchange corrections), as well as the inelas-
tic brem-sstrahlung for real photon emission [5].

For the LT separation technique, one extracts the ra-
tio R2 from the ε dependence of the cross section at fixed
Q2. Because of the factor ε/τ multiplying G2

E in (4), the
cross section becomes dominated by GM with increas-
ing Q2, while the relative contribution of the GE term is
suppressed. Hence understanding the ε dependence of the
radiative correction δ becomes increasingly important at
high Q2. As pointed out in [2], for example, a few percent
change in the ε slope in dσ can lead to a sizable effect on
R. In contrast, as we discuss later, the polarization trans-
fer technique does not show the same sensitivity to the ε
dependence of δ.

In general, δ is of order 25%. Fortunately, the dominant
radiative corrections appearing in δ either do not depend
on ε (vacuum polarization, electron vertex), or are well
understood (inelastic bremsstrahlung, which enters differ-
ently depending on whether the electron or proton are
detected). That leaves two-photon exchange as the only
viable ε-dependent radiative correction that can account
for the difference between the LT and polarization transfer
measurements.

In principle the two-photon exchange amplitude Mγγ

includes all possible hadronic intermediate states in Fig. 1.
Here we consider only the elastic contribution to the full
response function, and assume that the proton propagates
as a Dirac particle (calculations of excited state contribu-
tions are in progress [6]). We also assume that the off-shell
current operator is given by (1), and use phenomenological
form factors at the γ∗NN vertices. This is, of course, the
source of the model dependence in the problem. Clearly
this also creates a tautology, as the radiative corrections
are also used to determine the experimental form factors.
However, because δ for two-photon exchange is the ratio

δ =
2Re

{
M†

0Mγγ
}

|M0|2
, (7)

where M0 is the Born amplitude, the model dependence
cancels somewhat, provided we use the same phenomeno-
logical form factors for both M0 and Mγγ .

The dominant contribution to the box and crossed box
diagrams comes from the poles at k = 0 and k = q, which
lead to an infrared (IR) divergence. Typically an infinitesi-
mal photon mass λ is introduced in the photon propagator
to regulate the IR divergences. The IR divergent part is of

interest since it is the one usually included in the standard
RC analyses. It is also independent of hadronic structure.

The IR divergent part of the amplitude Mγγ gives
an IR divergent two-photon exchange contribution to the
cross section of the form

δIR = −2α

π
ln
(

Ei

Ef

)
ln
(

Q2

λ2

)
, (8)

a result given by Maximon and Tjon [7]. The logarithmic
IR singularity in λ is exactly cancelled by a corresponding
term in the bremsstrahlung cross section involving the in-
terference between real photon emission from the electron
and from the nucleon.

We are interested in the finite part of Mγγ that is not
included in the standard RC analyses. One approach is
to evaluate δ using (7) with the full expression for Mγγ ,
and subtract the IR-divergent result (8). This gives results
independent of the photon mass λ.

To compare with experimental analyses, we actually
use an expression for δIR from the standard treatment of
Mo and Tsai (MT) [5], which we call δIR(MT) to distin-
guish it from (8). The difference δIR − δIR(MT) already
gives a correction to the cross section of order 1% over
the full range of ε [7,8].

In [8] we used a simple monopole form factor to
parametrize the nucleon form factors in the loop integra-
tion for Mγγ . In the present analysis we use more realistic
form factors in the loop integration, fitted to GE,M data.
These are parametrized as a sum of 3 monopole form fac-
tors over a range in Q2 up to ≈ 10 GeV2. With this choice,
the loop integrals can be evaluated analytically in terms
of Passarino-Veltman functions [9]. In practice, we note
that our numerical results have only a weak dependence
on GE , and depend principally on the experimentally bet-
ter measured form factor GM .

2.1 Proton 2γ results

To compare the ε dependence of the full calculation with
that of δIR(MT), we consider the difference

∆ ≡ δfull − δIR(MT) , (9)

in which the IR divergences cancel, and which is indepen-
dent of λ.

The results for the difference ∆ between the full calcu-
lation and the MT approximation are shown in Fig. 2 for
Q2 = 3 and 6 GeV2. The additional corrections are signif-
icant at low ε, and essentially vanish at large ε. Significant
deviations from linearity are observed with increasing Q2,
especially at smaller ε.

To estimate the influence of these corrections on the
electric to magnetic proton form factor ratio, the simplest
approach is to examine how the ε slope changes with the
inclusion of the 2γ exchange. Of course, such a simplified
analysis can only be approximate since the ε dependence is
only linear over limited regions of ε, with clear deviations
from linearity at low ε and high Q2. In the actual data
analyses one should apply the correction ∆ directly to the
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Fig. 2. Difference between the full two-photon exchange cor-
rection to the elastic cross section (using realistic form factors)
and the commonly used Mo & Tsai result [5] for Q2 = 3 and
6 GeV2
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Fig. 3. The ratio of proton form factors µpGp
E/Gp

M mea-
sured using LT separation (open diamonds) [2] and polarization
transfer (PT) (open circles) [4]. The LT points corrected for 2γ
exchange are shown assuming a linear slope for ε = 0.2 − 0.9
(filled squares) and ε = 0.5− 0.8 (filled circles) (offset for clar-
ity)

data. However, it is still instructive to obtain an estimate
of the effect of R by taking the slope over several ranges
of ε.

Following [8], this can be done by fitting the correction
(1+∆) to a linear function of ε, of the form a(1+ bε), for
each value of Q2 at which the ratio R is measured.

The shift in R is shown in Fig. 3, together with the
polarization transfer data. We consider two ranges for
ε: a large range ε = 0.2 − 0.9, and a restricted range
ε = 0.5 − 0.8. The approximation of linear ε dependence
should be better for the latter, even though in practice
experiments typically sample values of ε near its lower
and upper bounds. A proposed experiment at Jefferson
Lab [10] aims to test the linearity of the ε plot through
a precision measurement of the unpolarized elastic cross
section.
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Fig. 4. Ratio of elastic e+p to e−p cross sections. The data
are from SLAC [11,12], with Q2 ranging from 0.01 to 5 GeV2.
The results of the 2γ exchange calculations are shown by the
curves for Q2 = 1 (dotted), 3 (dashed) and 6 GeV2 (solid)

The effect of the 2γ exchange terms on R is clearly
significant. As observed in [8], the 2γ corrections have
the proper sign and magnitude to resolve a large part
of the discrepancy between the two experimental tech-
niques. In particular, the earlier results [8] using simple
monopole form factors found a shift similar to that in for
the ε = 0.5 − 0.8 range in Fig. 3, which resolves around
1/2 of the discrepancy. The non-linearity at small ε makes
the effective slope somewhat larger if the ε range is taken
between 0.2 and 0.9. The magnitude of the effect in this
case is sufficient to bring the LT and polarization transfer
points almost to agreement, as indicated in Fig. 3.

2.2 Comparison of e+p to e−p cross sections

Direct experimental evidence for the contribution of 2γ
exchange can be obtained by comparing the ratio of e+p
to e−p cross sections. The interference of the M0 and Mγγ

amplitudes has the opposite sign for electron and positron
scattering. Since the finite part of the 2γ contribution is
negative over most of the range of ε, one would expect to
see an enhancement of the ratio of e+ to e− cross sections,

Re+e− ≈ 1 − 2∆ , (10)

where ∆ is defined in (9).
Although the current data on elastic e−p and e+p scat-

tering are sparse, there are some experimental constraints
from old data taken at SLAC [11,12], Cornell [13], DESY
[14] and Orsay [15]. The data are predominantly at low Q2

and at forward scattering angles, corresponding to large
ε (ε ≥ 0.7), where the 2γ exchange contribution is small
(≤ 1%). Nevertheless, the overall trend in the data reveals
a small enhancement in Re+e−

at the lower ε values, as
illustrated in Fig. 4 (which shows a subset of the data,
from the SLAC experiments [11,12]).

The data in Fig. 4 are compared with our theoretical
results, calculated for several fixed values of Q2 (Q2 = 1,
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Fig. 5. Ratio of the finite part (with respect to the IR contri-
bution in (8)) of the 2γ correction relative to the Born term,
for longitudinal (top) and transverse (bottom) recoil proton
polarization, for Q2 = 3 GeV2

3 and 6 GeV2). The results are in good agreement with
the data, although the errors on the data points are quite
large. Clearly better quality data at backward angles,
where an enhancement of up to ∼ 10% is predicted, would
be needed for a more definitive test of the 2γ exchange
mechanism. An experiment [16] using a beam of e+e−
pairs produced from a secondary photon beam at Jeffer-
son Lab will make simultaneous measurements of e−p and
e+p elastic cross sections up to Q2 ∼ 2 GeV2. A proposal
to perform a precise (∼ 1%) comparison of e−p and e+p
scattering at Q2 = 1.6 GeV2 and ε ≈ 0.4 has also been
made at the VEPP-3 storage ring [17].

3 Polarized electron–proton scattering

The results of the 2γ exchange calculation in the previ-
ous section give a clear indication of a sizable correction
to the LT-separated data at moderate and large Q2. We
now look at the effect of 2γ exchange on the polarization
transfer results. Specifically, we have recalculated Mγγ for
the case of a polarized incident electron, and a polarized
recoil proton.

The 2γ exchange contribution relative to the Born
term is shown in Fig. 5 for the cases of longitudinal (∆L)
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Fig. 6. Finite 2γ contributions (defined with respect to the
Mo-Tsai IR result [5]) to the real parts of the GE , GM and
Y2γ form factors of the proton at Q2 = 3 GeV2

and transverse (∆T ) proton polarization for Q2 = 3 GeV2.
In analogy with the unpolarized case (see (9)), the spin-
dependent corrections ∆L,T are defined as the finite parts
of the 2γ contributions relative to the IR expression from
Mo & Tsai [5], which are independent of polarization [18].

The corrections for ∆L show a more dramatic depen-
dence on ε than those for ∆T . As with the unpolarized
case, the effect is generally larger at small ε than at large
ε.

While the 2γ corrections clearly play a vital role in re-
solving most of the form factor discrepancy, it is instruc-
tive to understand the origin of the effect on R with re-
spect to contributions to the individual Gp

E and Gp
M form

factors. In general the amplitude for elastic scattering of
an electron from a proton, beyond the Born approxima-
tion, can be described by three (complex) form factors, F̃1,
F̃2 and F̃3, in terms of which the electromagnetic current
can be written as [19,20]

Γµ = F̃1 γµ + F̃2
iσµνqν

2M
+ F̃3

�KPµ

M2 , (11)

where Kµ = (pµ
1 +pµ

3 )/2, Pµ = (pµ
2 +pµ

4 )/2. The functions
F̃1,2,3 (both real and imaginary parts) are in general func-
tions of Q2 and ε, or the variable ν ≡ K · P , which is re-
lated to ε by ε =

(
ν2 − M4τ(1 + τ)

)
/
(
ν2 + M4τ(1 + τ)

)
.

In the 1γ exchange limit the F̃1,2 functions approach the
usual (real) Dirac and Pauli form factors, while the new
form factor F̃3 exists only at the 2γ level and beyond,

F̃1,2(Q2, ν) → F1,2(Q2) , (12)

F̃3(Q2, ν) → 0 . (13)

Alternatively, the current can be expressed in terms
of the generalized (complex) Sachs electric and magnetic
form factors, G̃M = GM + δGM and G̃E = GE + δGE .
The cross section and polarization observables, up to order
α2, can be written in terms of these functions [19,20]. The
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form factor F̃3 has been expressed in terms of the ratio [19]

Y2γ = Re

(
νF̃3

M2GM

)

. (14)

In Fig. 6 we show the contributions of 2γ exchange to the
(real parts of the) proton GE and GM form factors, and
the ratio Y2γ , evaluated at Q2 = 3 GeV2.

It is interesting to observe that the 2γ correction to
GM is significantly larger than that to GE for ε ≤ 0.8,
and has a significant ε dependence (cf. [21]). The new
correction Y2γ is smaller than that extracted in the phe-
nomenological analysis [19] under the assumption that the
entire form factor discrepancy is due to the new F̃3 con-
tribution.

4 Summary

We have presented an overview of the effects of 2γ ex-
change in elastic electron–proton scattering, taking partic-
ular account of the effects of nucleon structure. Consistent
with the simple model used in our earlier investigation [8],
we find that inclusion of 2γ exchange reduces the Gp

E/Gp
M

ratio extracted from LT-separated cross section data, and
resolves a significant amount of the discrepancy with the
polarization transfer results.

At higher Q2 we find strong deviations from linear-
ity, especially at small ε, which can be tested in future
high-precision cross section measurements. There is some
residual model-dependence in the calculation of the 2γ
amplitude arising from the choice of form factors at the
internal γ∗NN vertices in the loop integration. This de-
pendence, while not overwhelming, will place limitations
on the reliability of the LT separation technique in extract-
ing high-Q2 form factors. On the other hand, the size of
the 2γ contributions to elastic scattering could be deter-
mined from measurement of the ratio of e−p to e+p elastic
cross sections, which are uniquely sensitive to 2γ exchange
effects.

We have also generalized our analysis to the case where
the initial electron and recoil proton are polarized, as
in the polarization transfer experiments. While the 2γ
corrections can be as large as ∼ 4 − 5% at small ε for
Q2 ∼ 6 GeV2, since the polarization transfer measure-
ments are performed typically at large ε we find the im-
pact on the extracted Gp

E/Gp
M ratio to be quite small,

amount to ≤ 3% suppression at the highest Q2 value.

Contributions from excited states, such as the ∆ and
heavier, may modify the quantitative analysis presented
here. Naively, one could expect their effect to be sup-
pressed because of the larger masses involved. A detailed
investigation of the inelastic excitation effects is currently
in progress [6].

Acknowledgements. This work was supported in part by
NSERC (Canada), DOE grant DE-FG02-93ER-40762, and
DOE contract DE-AC05-84ER-40150 under which the South-
eastern Universities Research Association operates the Thomas
Jefferson National Accelerator Facility.

References

1. R.C. Walker et al.: Phys. Rev. D 49, 5671 (1994)
2. J. Arrington: Phys. Rev. C 68, 034325 (2003)
3. J. Arrington: nucl-ex/0312017
4. M.K. Jones et al.: Phys. Rev. Lett. 84, 1398 (2000); O.

Gayou et al.: Phys. Rev. Lett. 88, 092301 (2002)
5. L.W. Mo, Y.S. Tsai: Rev. Mod. Phys. 41, 205 (1969);

Y. S. Tsai: Phys. Rev. 122, 1898 (1961)
6. P.G. Blunden, W. Melnitchouk, J. A. Tjon: in preparation
7. L.C. Maximon, J.A. Tjon: Phys. Rev. C 62, 054320 (2000)
8. P.G. Blunden, W. Melnitchouk, J.A. Tjon: Phys. Rev.

Lett. 91, 142304 (2003)
9. G. Passarino, M.J. Veltman: Nucl. Phys. B 160, 151 (1979)

10. Jefferson Lab proposal PR-04-020, J. Arrington spokesper-
son

11. A. Browman, F. Liu, C. Schaerf: Phys. Rev. 139, B1079
(1965)

12. J. Mar et al.: Phys. Rev. Lett. 21, 482 (1968)
13. R.L. Anderson et al.: Phys. Rev. Lett. 17, 407 (1966);

Phys. Rev. 166, 1336 (1968)
14. W. Bartel et al.: Phys. Lett. B 25, 242 (1967)
15. B. Bouquet et al.: Phys. Lett. B 26, 178 (1968)
16. W.K. Brooks et al.: Beyond the Born approximation: A

precise comparison of e+p and e−p scattering in CLAS,
Jefferson Lab experiment E04-116 (2004)

17. J. Arrington et al.: Two-photon exchange and elastic scat-
tering of electrons/positrons on the proton, proposal for an
experiment at VEPP-3 (2004), nucl-ex/0408020

18. L.C. Maximom, W.C. Parke: Phys. Rev. D 61, 045502
(2000)

19. P.A.M. Guichon, M. Vanderhaeghen: Phys. Rev. Lett. 91,
142303 (2003)

20. Y.C. Chen, A. Afanasev, S.J. Brodsky, C.E. Carlson,
M. Vanderhaeghen: Phys. Rev. Lett. 93, 122301 (2004)

21. J. Arrington: hep-ph/0408261


	Introduction
	Unpolarized electron--proton scattering
	relax mathversion {bold}Proton 2$gamma $ results
	relax mathversion {bold}Comparison of $e^+ p$ to $e^- p$ cross sections

	Polarized electron--proton scattering
	Summary

